- 文章信息
- 作者: kaiwu
- 点击数:33
simulated dataset (tourist satisfaction)
1. questionnaire
http://kaiwu.city/openfiles/tourist_satisfaction_questionnaire_en.docx
http://kaiwu.city/openfiles/tourist_satisfaction_questionnaire_en.pdf
No. | variable | variable labels |
1 | sid | Respondent ID |
2 | gender | gender |
3 | byear | Year of birth |
4 | region | region |
5 | income | monthly income |
6 | expense | daily expense |
7 | type3 | Destination type: nature, culture and mix |
8 | type2 | Destination type: sightseeing vs. participation |
9 | thotel | Types of hotel |
10 | sat1 | satisfaction: scenery |
11 | sat2 | satisfaction: hotel |
12 | sat3 | satisfaction: food |
13 | sat4 | satisfaction: transportation |
14 | sat5 | satisfaction: travel agency |
15 | sat6 | satisfaction: shopping |
16 | ri1 | Importance: amount |
17 | ri2 | Importance: publishing date |
18 | ri3 | Importance: relevance |
19 | ri4 | Importance: positive |
20 | ri5 | Importance: credibility |
21 | rp1 | Performance: amount |
22 | rp2 | Performance: publishing date |
23 | rp3 | Performance: relevance |
24 | rp4 | Performance: positive |
25 | rp5 | Performance: credibility |
26 | te1 | thrill |
27 | te2 | indulgence |
28 | te3 | enjoyment |
29 | te4 | excitement |
30 | te5 | liberaty |
31 | te6 | freedom |
32 | te7 | refreshment |
33 | te8 | revitalization |
34 | zh1 | uncomfortable when there are many people |
35 | zh2 | I dislike interpersonal communication |
36 | zh3 | I’m not good at interpersonal communication |
37 | zh4 | I try to avoid face-to-face communication |
38 | zh5 | Going out is a tiring thing for me. |
39 | zh6 | I try to avoid going out |
40 | zh7 | It’s troublesome for me to go out. |
41 | latitude | latitude |
42 | longitude | longitude |
value labels | |
Value labels gender | |
1 | male |
2 | female. |
Value labels region | |
1 | Central China |
2 | East China |
3 | North China |
4 | Northeast China |
5 | Northwest China |
6 | Southwest China |
7 | West China. |
Value labels type3 | |
1 | natural scenery |
2 | historical scenery |
3 | mixed scenery. |
Value labels type2 | |
1 | sightseeing |
2 | participation. |
Value labels thotel | |
1 | budget hotel |
2 | luxury hotel |
3 | bed and breakfast |
4 | apartment hotel. |
2. dataset
2.1 csv file
general purpose (without variable labels and value labels)
http://kaiwu.city/openfiles/tourist.csv
or
2.2 Excel file
http://kaiwu.city/openfiles/data_tourist_satisfaction_en.xlsx
or
2.3 SPSS file
http://kaiwu.city/openfiles/data_tourist_satisfaction_en.sav
3. python ipynb file
http://kaiwu.city/openfiles/tourist_EN2024Nov10.ipynb
4.results
http://kaiwu.city/openfiles/academic_report_SPSS_EN.docx
3.1 frequency Analysis(discrete variables)
https://libguides.library.kent.edu/SPSS/FrequenciesCategorical
https://www.spss-tutorials.com/spss-frequencies-command/
https://datatab.net/tutorial/frequency-table
3.2 cross-table(discrete variables)
https://libguides.library.kent.edu/SPSS/Crosstabs
3.3 Descriptive analysis(continuous variables)
https://libguides.library.kent.edu/SPSS/Descriptives
https://www.spss-tutorials.com/spss-descriptives-command/
3.4 custom table
https://www.ibm.com/docs/en/spss-statistics/saas?topic=statistics-custom-tables
http://kaiwu.city/index.php/spss-custom-table
4.relationship between two variables
types of variables (level of measurment)
https://statistics.laerd.com/statistical-guides/types-of-variable.php
https://www.thoughtco.com/independent-and-dependent-variable-examples-606828
https://datatab.net/tutorial/level-of-measurement
4.1 chi-square test
https://libguides.library.kent.edu/SPSS/ChiSquare
https://datatab.net/tutorial/chi-square-test
4.2 independent sample t-test
https://libguides.library.kent.edu/SPSS/IndependentTTest
https://datatab.net/tutorial/unpaired-t-test
4.3 ANOVA
https://libguides.library.kent.edu/SPSS/OneWayANOVA
https://datatab.net/tutorial/anova
4.4 correlation
https://libguides.library.kent.edu/SPSS/PearsonCorr
https://datatab.net/tutorial/correlation
4.5 logistic regression
https://www.spss-tutorials.com/logistic-regression/
https://datatab.net/tutorial/logistic-regression
5.analysis for scales (measurement)
5.1 reliability analysis
https://www.spss-tutorials.com/cronbachs-alpha-in-spss/
https://www.spss-tutorials.com/spss-split-half-reliability/
https://datatab.net/tutorial/cronbachs-alpha
5.2 exploratory factor analysis (EFA) for validity analysis
https://www.spss-tutorials.com/spss-factor-analysis-tutorial/
https://www.spss-tutorials.com/spss-factor-analysis-intermediate-tutorial/
https://www.spss-tutorials.com/apa-reporting-factor-analysis/
https://datatab.net/tutorial/exploratory-factor-analysis
6.export result
https://www.spss-tutorials.com/spss-output/
https://www.spss-tutorials.com/spss-apa-format-descriptives-tables/
- 文章信息
- 作者: kaiwu
- 点击数:57
1.introduction to python
about python
http://kaiwu.city/index.php/python
books on python
http://kaiwu.city/index.php/python-book
2.install python
python 3.13 you can download from official website
https://www.python.org/downloads/
or
http://kaiwu.city/openfiles/python-3.13.0-amd64.exe
http://kaiwu.city/index.php/python-vscode
3.python and Excel
http://kaiwu.city/openfiles/hotel50python_EN.xlsx
http://kaiwu.city/openfiles/python_excel50hotel_EN.ipynb
import openpyxl as xl; # be sure to modify the folder where the files are stored. # load the workbook # create a new workbook # The "i" represents the row number. # Save the created Excel workbook. print('save No. %d Excel file。' % (i-1))
|
- 文章信息
- 作者: kaiwu
- 点击数:127
1. basic of excel
http://kaiwu.city/index.php/online-office-en
tengxun document
2.download the simulated dataset
2.1 questionnaire(simulated dataset)
2.2 data for general purpose (without variable labels and value labels)
2.3 data for Excel (with variable labels and value labels)
http://kaiwu.city/openfiles/data_tourist_satisfaction_enlabels2024.xlsx
- 文章信息
- 作者: kaiwu
- 点击数:215
https://www.ibm.com/cn-zh/topics/generative-ai
Gen AI applications are a type of artificial intelligence that utilise Gen AI ;various processes including deep learning models, complex algorithms and neural networks, by accessing large training datasets to produce their own original content. They can be classed as machine learning technology. Students may use Gen AI applications to generate new content including text, sound, images, or video. They do this by analyzing patterns in existing data and then creating output, sometimes shaped by prompts and input from the user.
The term Gen AI refers to computational techniques that are capable of generating seemingly new, meaningful content such as text, images, or audio from training data.
1. transform model
tranditional article of transform model
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention Is All You Need (arXiv:1706.03762). arXiv. https://doi.org/10.48550/arXiv.1706.03762
video for transform model
https://www.bilibili.com/video/BV1gG411a7bw/
2.international service
2.1 chatGPT from openAI
2.2 gemini from google
2.3 claude from anthropic
https://www.anthropic.com/claude
2.4 llama from meta
https://llama.meta.com/llama3/
3. Chinese service
3.1 metaso
3.2 kimi
3.3 yiyan from baidu.com
3.4 tongyi from aliyun
3.5 xunfei from iflytek
3.6 hunyuan from tencent
3.7 doubao from bytedance
3.8 suno (for music)
4.practice
4.1 search answers
prompt:authenticity in tourism experience
4.2 search codes for programming
prompt:how to import json dataset using python
4.3 summary
Wang, N. (1999). Rethinking Authenticity in Tourism Experience. Annals of Tourism Research, 26(2), 349–370. https://doi.org/10.1016/S0160-7383(98)00103-0
http://kaiwu.city/openfiles/rethinking_authenticity1999wang_ning.pdf
prompt:Please summarize this article in 300 words
4.4 OCR(Optical Character Recognition)
prompt:please OCR this image, and organize the information in a table
4.5 translation
prompt:please translate this into Chinese
prompt:please show me 8 editions of translation
4.6 data analysis
http://kaiwu.city/openfiles/tourist.csv
prompt:please summarize this dataset
prompt:how to use python to conduct frequency analysis for gender variable of this dataset
4.7 TTS (text to speech)
----
https://en.wikipedia.org/wiki/Generative_artificial_intelligence
Generative artificial intelligence (generative AI, GenAI,[1] or GAI) is artificial intelligence capable of generating text, images, videos, or other data using generative models,[2] often in response to prompts.[3][4] Generative AI models learn the patterns and structure of their input training data and then generate new data that has similar characteristics.[5][6]
- 文章信息
- 作者: kaiwu
- 点击数:582
1.ollama
https://github.com/ollama/ollama
https://ollama.com/blog/llama3
用于ollama的模型:
Ollama supports a list of models available on ollama.com/library
Here are some example models that can be downloaded:
Model | Parameters | Size | Download |
---|---|---|---|
Llama 3.2 | 3B | 2.0GB | ollama run llama3.2 |
Llama 3.2 | 1B | 1.3GB | ollama run llama3.2:1b |
Llama 3.1 | 8B | 4.7GB | ollama run llama3.1 |
Llama 3.1 | 70B | 40GB | ollama run llama3.1:70b |
Llama 3.1 | 405B | 231GB | ollama run llama3.1:405b |
Phi 3 Mini | 3.8B | 2.3GB | ollama run phi3 |
Phi 3 Medium | 14B | 7.9GB | ollama run phi3:medium |
Gemma 2 | 2B | 1.6GB | ollama run gemma2:2b |
Gemma 2 | 9B | 5.5GB | ollama run gemma2 |
Gemma 2 | 27B | 16GB | ollama run gemma2:27b |
Mistral | 7B | 4.1GB | ollama run mistral |
Moondream 2 | 1.4B | 829MB | ollama run moondream |
Neural Chat | 7B | 4.1GB | ollama run neural-chat |
Starling | 7B | 4.1GB | ollama run starling-lm |
Code Llama | 7B | 3.8GB | ollama run codellama |
Llama 2 Uncensored | 7B | 3.8GB | ollama run llama2-uncensored |
LLaVA | 7B | 4.5GB | ollama run llava |
Solar | 10.7B | 6.1GB | ollama run solar |
Note
You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
2.中文相关的几个模型
2.1 llama2-chinese
https://ollama.com/library/llama2-chinese
ollama run llama2-chinese
2.2 qwen
https://ollama.com/library/qwen
阿里云的千问模型
ollama run qwen
2.3 yi
Yi 是百度的大语言模型
https://ollama.com/library/yi:34b
https://huggingface.co/01-ai/Yi-34B
ollama run yi
ollama run yi:9b
ollama run yi:34b
3.图形界面
https://github.com/fmaclen/hollama
一个用于与 Ollama 服务器对话的简约网页界面。
功能特点:
- 大型提示字段
- 支持语法高亮的 Markdown 渲染
- 代码编辑器功能
- 可定制的系统提示
- 复制代码片段、消息或整个会话
- 编辑并重试消息
- 数据本地存储在您的浏览器上
- 响应式布局
- 浅色和深色主题
- 多语言界面
- 直接从界面下载 Ollama 模型
4.移动应用app
Pocketpal这个app可以下载LLama模型,可以在没有联网的情况下(手机本地环境)进行类似于chat GPT的问答
https://github.com/Anicodeth/Pocketpal/tree/main/Mobile
https://github.com/a-ghorbani/PocketPal-feedback
https://apkpure.com/cn/pocketpal/com.pocketpalai/
PocketPal_1.4.6_APKPure.xapk
https://play.google.com/store/apps/details?id=com.pocketpalai